※ 引述《semmy214 (黃小六)》之銘言:
: https://imgur.com/a/5gdBShZ
: 想請教下這題
令T(x,t)=U(x)+V(x,t) 將穩態跟動態分開
先考慮穩態的部分,
原式變成0=4 partial^2 T/partial x^2
因為穩態時間不變,且V(x,t)在穩態時=0
-> T(x,t)=U(x)
-> 0=4 partial^2 U/partial x^2
-> d^2 U/dx^2=0
-> U(x)=ax+b
-> U'(x)=a
代入兩個邊界條件
U(0)=b=0
U'(1)=a=1
-> U(x)=x
-> T(x,t)=x+V(x,t)
考慮新的邊界條件
T(0,t)= 0+V(0,t)=0 -> V(0,t)=0
partial T(1,t)/partial x = 1+partial V(1,t)/partial x=1
->partial V(1,t)/partial x=0
將兩個邊界條件都化為0
回到原本問題
partial T(x,t)/partial t = partial V(x,t)/partial t
partial^2 T(x,t)/partial x^2 = partial^2 V(x,t)/partial x^2
所以 partial V(x,t)/partial t = 4 partial^2 V(x,t)/partial x^2
-> Z(x)R'(t)=4Z''(x)R(t)
-> R'(t)/4R(t)=Z''(x)/Z(x)=λ
先算Z(x)
Z''(x)-λZ(x)=0
特徵方程式
α^2-λ=0
令λ=-(β^2) 找共軛虛根
α=+-βi
-> Z(x)= C1 cos βx+C2 sin βx
代入邊界條件
Z(0)=C1=0
->Z(x)=C2 sin βx
->Z'(x)=βC2 cos βx
代入邊界條件
Z'(1)=βC2 cos β=0
因為βC2不能等於0
所以cos β=0
-> β= (2n-1)π/2 (n = 1、2、3、4...)
-> Zn(x)=C2n sin (2n-1)π/2 x
[其實題目只要算到這就好Eigenfunction]
->λ=-[(2n-1)π/2]^2
[Eigenvalue]
再來算R(t):
R'(t)-4λR(t)=0
特徵方程式
α-4λ=0
->α+[(2n-1)π]^2=0
->α= -[(2n-1)π]^2
Rn(t)= d1n e^-[(2n-1)π]^2 t
Vn(x,t)=Zn(x)Rn(t)= An * e^-[(2n-1)π]^2 t * sin (2n-1)π/2 x (An= d1n*C2n)
因為原方程式是線性方程式,利用重疊定理
V(x,t)=sigma [n=1->∞]Vn(x,t)
=sigma [n=1->∞] An * e^-[(2n-1)π]^2 t * sin (2n-1)π/2 x
考慮新的初始條件:
T(x,0)=2=x+V(x,0)
->V(x,0)= 2-x = sigma [n=1->∞] An * sin (2n-1)π/2 x
[這邊視為用傅立葉sin級數展開,所以(2-x)會被視為奇函數]
積分 [-1->1] (2-x)* sin (2n-1)π/2 x dx = An
->An = 2* 積分 [0->1] (2-x)* sin (2n-1)π/2 x dx
= 8/[(2n-1)π]^2 * (-1)^n + 8/[(2n-1)π]
所以V(x,t)=sigma [n=1->∞] An * e^-[(2n-1)π]^2 t * sin (2n-1)π/2 x
T(x,t)= x+V(x,t)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 203.204.210.81 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1741528171.A.703.html
※ 編輯: wallowes (203.204.210.81 臺灣), 04/20/2025 00:11:05