看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰分析導論優一 課程性質︰數學系大二必修 課程教師︰王振男 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2015/01/13 考試時限(分鐘):180 試題 : 1. (20%) Define 2 ∞ -n t sin(nx) f(t, x) = Σ e n=1 Show that f(t, x) solves 2 ∂f ∂ f ──- ── = 0 in (t, x) ∈ (0, ∞) ×(0, π) ∂t 2 ∂x and f(t, 0) = f(t, π) = 0 for all t > 0. 2. (20%) Determine all real values of x for which the following series converges: ∞ 1 1 sin nx Σ ( 1 + ─+ ... + ─) ─── n=1 2 n n (Homework 8.26). 3. (20%) "Assume that both {f (x)} and {g (x)} converge uniformly on an interval n n I of |R. Then {f (x)g (x)} converges uniformly on I." Is this statement true? n n If your answer is "No", please modify the statement such that the new statement is true. You will not get any credit if you consider trivial modifications such as assuming that f (x) = a , g (x) = b or one of f (x) or n n n n n g (x) is a fixed constant for all n. n ∞ 4. A series Σ a is said to be Abel summable if there exists a function f(x) on n=0 n (-1, 1) such that ∞ n f(x) = Σ a x n=0 n and lim f(x) exists. x→1- (a) (10%) Show that Cesaro summability implies Abel summability. (b) (10%) Does the converse hold? ∞ 5. Let {a } be a set of given real numbers. n n=0 (a) (10%) Show that you can not always find a real analytic function f(x) in (n) I, an open interval of 0, such that f (0) = a . n ∞ (n) (b) (10%) However, you can always find a f(x) ∈ C (I) such that f (0) = a . This is the so-called Borel's lemma. Here is how the proof goes. n ∞ Assume that there exists a C (I) function φ(x) with φ(x) = 1 for x near 0 and φ(x) = 0 for x ∈ I \ (-ε, ε) with ε > 0 and (-ε, ε) ⊆ I. Now define ∞ f(x) = Σ g (x), n=0 n where n x x g (x) = φ(──) ─ a n δ n! n n (n) and δ → 0. It is easy to see that f (0) = a if we show that f ∈ n n ∞ C (I). To do so, we prove that we can choose appropriate δ such that n for 0 ≦ k ≦ n-1, (k) -n sup |g (x)| ≦ 2 . x∈I n Thus the series converges uniformly and can be differentiated term by term infinitely many times. Hint: differentiate g (x) and treat x/δ as n n a new variable. 註: 1. 第三題的敘述,如果是對的就要給出證明,否則就要給出反例,並加上一些條件讓這個 敘述變成對的。 2. 第五題只要證明找得到那個 δ 就好了。 n -- 第01話 似乎在課堂上聽過的樣子 第02話 那真是太令人絕望了 第03話 已經沒什麼好期望了 第04話 被當、21都是存在的 第05話 怎麼可能會all pass 第06話 這考卷絕對有問題啊 第07話 你能面對真正的分數嗎 第08話 我,真是個笨蛋 第09話 這樣成績,教授絕不會讓我過的 第10話 再也不依靠考古題 第11話 最後留下的補考 第12話 我最愛的學分 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.76 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1421403400.A.123.html ※ 編輯: xavier13540 (140.112.249.76), 01/16/2015 18:21:33 ※ 編輯: xavier13540 (140.112.249.76), 01/17/2015 16:46:41 ※ 編輯: xavier13540 (140.112.249.76), 01/17/2015 16:47:08
t0444564 : 已收錄 01/18 23:34