看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰統計學與計量經濟學暨實習上 課程性質︰必修 課程教師︰張勝凱 開課學院:社會科學院 開課系所︰經濟系 考試日期(年月日)︰2014/10/22 考試時限(分鐘):180分鐘 試題 : Econ 2014 Statistics and Econometrices I First Midterm Exam (10/22/2014) Problem 1. (15 points (5,5,5)) Are the following functions legitimate probility mass functions?Why or why not. x + 2 (a) f (x) = ────, x = -1,0,1,2 X 10 x (b) f (x) = ──, x = -1,0,1,2 X 2 1 (c) f (x) = ──, x = -1,2,3,... X x Sol: Recall Axioms of Probability: (1) P(ψ) = 0, P(S) = 1, ψ denotes empty set. (2) P(A) ≧ 0 for all A ⊆ S. (3) For all mutually exclusive events, A,B ⊆ S => P(A ∪ B) = P(A) + P(B) (a)┌──┬──┐ │ X │P(X)│ ├──┼──┤ │ -1 │1/10│ ├──┼──┤ │ 0 │2/10│ ├──┼──┤ │ 1 │3/10│ ├──┼──┤ │ 2 │4/10│ └──┴──┘ (1) P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2) = 1 (2) P(X=-1),P(X=0),P(X=1),p(X=2) > 0 => P(X) follow axioms of probability. (b)┌──┬──┐ │ X │P(X)│ ├──┼──┤ │ -1 │-1/2│ ├──┼──┤ │ 0 │ 0 │ ├──┼──┤ │ 1 │ 1/2│ ├──┼──┤ │ 2 │ 1 │ └──┴──┘ (1) P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2) = 1 (2) P(X = -1) = -1/2 < 0 => P(X) does not follow axioms of probability. (c)┌──┬──┐ │ X │P(X)│ ├──┼──┤ │ -1 │ -1 │ ├──┼──┤ │ 2 │ 1/2│ ├──┼──┤ │ 3 │ 1/3│ ├──┼──┤ │ n │ 1/n│ └──┴──┘ (1) P(X = -1) + P(X = 2) + P(X = 3) + ... > 1 (2) P(X = -1) = -1 < 0 => P(X) does not follow axioms of probability. Problem 2. (20 points (5,5,4,3,3)) Given the following probability distribution, for the joint pmf of random variables X and Y in the table below: ┌───┬───┬───┐ │ │ x = 1│ x = 2│ ├───┼───┼───┤ │ y = 0│ 0.1 │ 0.2 │ ├───┼───┼───┤ │ y = 1│ 0.1 │ 0.1 │ ├───┼───┼───┤ │ y = 2│ 0.3 │ 0.2 │ └───┴───┴───┘ (a) Find the conditional expectation function E[Y|X]. (b) Find the best linear prediction E*[Y|X]. (c) Are X and Y stochastically independent? Why or why not. (d) Is Y mean independent of X? Why or why not. (e) Are X and Y uncorrelated? Why or why not. P(Y=0,X=1) 0.1 1 Sol: (a) P(Y = 0 | X = 1) = ────── = ─── = ── P(X=1) 0.5 5 P(Y=1,X=1) 0.1 1 P(Y = 1 | X = 1) = ────── = ─── = ── P(X=1) 0.5 5 3 P(Y = 2 | X = 1) = ── 5 2 P(Y = 0 | X = 2) = ── 5 1 P(Y = 1 | X = 2) = ── 5 2 P(Y = 2 | X = 2) = ── 5 1 1 3 7 E[Y|X = 1] = 0‧── + 1‧── + 2‧── = ── 5 5 5 5 2 1 2 E[Y|X = 2] = 0‧── + 1‧── + 2‧── = 1 5 5 5 (b) E*[Y|X] = α + βx E[X] = 1‧0.5 + 2‧0.5 = 1.5, Var(X) = 2.5 - (1.5)^2 = 0.25 Cov(X,Y) = E[XY] - E[X]E[Y] = (1‧1‧0.1 + 1‧2‧0.1 + 2‧1‧0.3 + 2‧2‧0.2) - 1.5‧1.2 = 1.7 - 1.8 = -0.1 Cov(X,Y) 0.1 β = ───── = - ─── = -0.4 , α = E[Y] - βE[X] = 1.8 Var(X) 0.25 E*[Y|X] = 1.8 - 0.4x (c) P(X = 1, Y = 0) = 0.1 ≠ 0.15 = P(X = 1)‧P(Y = 0) ∴ X and Y are not stochastically independent. (d) E[Y] = 1.2 ≠ E[Y|X = 1], E[Y] ≠ E[Y|X = 2] ∴ Y is not mean independent of X. (e) Cov(X,Y) = -0.1 ≠ 0 ∴ X and Y are not uncorrelated. Problem 3. (15 points) X and Y are two random variables which only take two values, 1 and 2.From the Following joint probability table, calculte E[X], Var(X), Cov(X,Y), and E[X^3]. ┌───┬───┬───┐ │ │ Y = 1│ Y = 2│ ├───┼───┼───┤ │ X = 1│ 0.2 │ 0.2 │ ├───┼───┼───┤ │ X = 2│ 0.1 │ 0.5 │ └───┴───┴───┘ Sol: E[X] = 1‧0.4 + 2‧0.6 = 1.6 Var(X) = E[X^2] - (E[X])^2 = 2.8 - (1.6)^2 = 0.24 Cov(X,Y) = E[XY] - E[X]E[Y] = 2.8 - 1.6‧1.7 = 0.08 E[X^3] = 1^3‧0.4 + 2^3‧0.6 = 5.2 Problem 4. (20 points (5,5,5,5)) The joint probability of X and Y is as follow. ╭ │ 2x + y │ ──── , if x = 1, 2; y = 0, 2 P (x,y) = ﹤ 16 XY │ │ 0 , otherwise. ╰ (a) Develop a joint probability table. (b) Find E[X] and E[Y]. (c) Find Var(X) and Var(Y). (d) Find Cov(x,Y). Sol: (a)┌───────┬───────┬───┐ │ │ Y │ │ │ ├───┬───┼───┤ │ │ 0 │ 2 │ f(x) │ ├───┬───┼───┼───┼───┤ │ │ 1 │ 1/8 │ 2/8 │ 3/8 │ │ X ├───┼───┼───┼───┤ │ │ 2 │ 2/8 │ 3/8 │ 5/8 │ ├───┼───┼───┼───┼───┤ │ │ f(y) 3/8 5/8 1 │ └───┴───┴───┴───┴───┘ (It's ok if you did not write the red part.) (b) E[X] = 3/8 + 10/8 = 13/8, E[Y] = 10/8 = 5/4 (c) E[X^2] = 3/8 + 20/8 = 23/8, E[Y^2] = 5/2, Var(X) = 23/8 - (13/8)^2 = 15/64, Var(Y) = 5/2 - (5/4)^2 = 15/16 (d) E[XY] = 2˙(2/8) + 4˙(3/8) = 16/8 = 2, Cov(X,Y) = E[XY] - E[X]E[Y] = -1/32 Problem 5. (10 points) Suppose Z = XY, where X and Y are independent random variables. Show that Var(Z) = Var(X)Var(Y) + [(E[X])^2]Var(Y) + [(E[Y])^2]Var(X). (Hint: if X and Y are independent, then E[XY] = E[X]E[Y] and E[X^2 Y^2] =E[X^2]E[Y^2] ) Sol: Part A: Var(Z) = Var(XY) = E[(XY)^2] - (E[XY])^2 = E[X^2 Y^2] -(E[X]E[Y])^2 = E[X^2]E[Y^2] - (E[X]E[Y])^2 (∵ X and Y are independent.) Part B: Var(X)Var(Y) + (E[X])^2˙Var(Y) + (E[Y])^2˙Var(X) = {[E[X^2]-(E[X])^2][E[Y^2]-(E[Y])^2]} + [(E[X])^2][E[Y^2]-(E[Y])^2] + (E[Y])^2˙[E[X^2]-(E[X])^2] = E[X^2]E[Y^2] - E[X^2](E[Y])^2 - (E[X])^2˙E[Y^2] + (E[X])^2˙(E[Y])^2 + (E[X])^2˙E[Y^2] - (E[X])^2˙(E[Y])^2 + E[X^2](E[Y])^2 - (E[X])^2˙(E[Y])^2 = E[X^2]E[Y^2] - (E[X])^2˙(E[Y])^2 ∵ Part A = Part B ∴ Var(Z) = Var(X)Var(Y) + [(E[X])^2]Var(Y) + [(E[Y])^2]Var(X) Problem 6.(20 points (10,10)) Let X_i ~ Bernoulli(p), i = 1,2,3 and X_i s are i.i.d. random variables. X_1 + 2X_2 + 3X_3 Moreover, let Y = ────────── . 6 (a) Find E[X_1] and Var(X_2) in terms of p. (b)Find E[Y] and Var(Y) in terms of p. (Hint: if X ~ Bernoulli(p), f_X(x) = (p^x)(1-p)^(1-x) , X = 0, 1) Sol: (a) E[X_1] = E[X] = p, Var(X_2) = Var(X) = p(1-p) (X_i s are i.i.d.) X_1 + 2X_2 + 3X_3 (b) E[Y] = E[ ────────── ] = (1/6)E[X_1 + 2X_2 + 3X_3] 6 = (1/6)(E[X_1] + E[2X_2] + E[3X_3]) = (1/6)(p+2p+3p) = p X_1 + 2X_2 + 3X_3 Var(Y) = Var( ────────── ) = (1/6)^2˙Var(X_1 + 2X_2 + 3X_3) 6 = (1/36)[Var(X_1) + Var(2X_2) + Var(3X_3)] = (1/36)[p(1-p) + 2^2˙p(1-p) + 3^3˙p(1-p)] = (14/36)p(1-p) = (7/18)p(1-p) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.166.211.193 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1422885086.A.226.html ※ 編輯: Malzahar (118.166.209.119), 02/03/2015 14:08:04 ※ 編輯: Malzahar (118.166.209.119), 02/03/2015 14:08:42 ※ 編輯: Malzahar (118.166.213.241), 02/09/2015 15:34:04
chrisyang24 : ㄙㄙㄙ 10/17 21:20