看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數導論二 課程性質︰必修 課程教師︰莊武諺 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2014/05/15 考試時限(分鐘):30分鐘 試題 : 代數導論第五次小考 INTRODUCTION TO ALGEBRA II - QUIZ V MAY 15 2014 (1) (15 points) Please determine the splitting field and its degree over Q for x^p - 2, where p is prime. (2) (15 points) Prove that [f(x)]^p = f(x^p) for any polynomial f(x) ∈ F_p[x]. (3) (20 points) First recall the theorem [Dummit-Foote,Section 13.4,Exercise5]: Let K be a finite extension of F. Then K is splitting field over F for some g(x) ∈ F[x] if and only if every polynimal in F[x] with a root in K splits completely in K[x]. Now let K_1 and K_2 be finite extensions of F contained in the field K. Assume they are both splitting field over F. Prove that K_1∩K_2 is a splitting field over F. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.166.208.40 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1423645316.A.C7D.html ※ 編輯: Malzahar (118.166.208.40), 02/11/2015 17:02:04
t0444564 : 已收錄 02/14 20:02