看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰常微分方程導論 課程性質︰必修 課程教師︰夏俊雄 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2012/12/28 考試時限(分鐘):100分鐘 試題 : ODE ExAm 3 12/28/2012 In this exam, let f(t) and g(t) be piecewise continuous function defined on [0,∞). The convolution of f(t) and g(t) are defined as t (f*g)(t) := ∫ f(t-s)g(s)ds. 0 1. (10 points) Let L denote the Laplace transform and L^-1 denote the inverse Laplace transform. Show that L(f*g)(s) = L(f)(s)L(g)(s). 2. (10 points) Solve the integro-differential equation t y'(t) = 1 - ∫ y(t - s)e^-3s ds, y(0) = 2. 0 3. (10 points) Do you think the following equation have periodic solutions? Prove or disprove it. x'' + x + x^3 = 0. 4. (80 points) Find general solution for the following differential equations. (1) (t^2)x'' - 3tx' + 4x = 0, t>0, (2) x'''(t) - 3x''(t) + 3x'(t) - x(t) = 2t + e^t, t∈R, (3) x''(t) + tx'(t) + 2x(t) = 0, t∈R, (4) y'' + y = u_4π(t), t≧0. 5. (10 points) Show that for certain μ∈R, the van der Pol equation u'' - μ(1 - u^2)u' + u = 0 has time periodic solutions. What theorem shall you apply? -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.166.208.171 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1423726446.A.5A3.html ※ 編輯: Malzahar (118.166.208.171), 02/12/2015 15:34:17
t0444564 : 已收錄 02/14 20:02