看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰常微分方程導論 課程性質︰必修 課程教師︰夏俊雄 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2012/09/14 考試時限(分鐘): 試題 : ODE QUIZ 2 9/14/2012 1. ╭ 1 1╮ ╭1 1╮ ╭ 1 2╮ A = │ │, A = │ │, A = │ │, ╰-1 3╯ ╰0 3╯ ╰-2 1╯ For each of the above matrices A ∈ M_2(R), solve the differential equation dx(t) ──── = Ax(t), dt T with initial condition x(0) = (1,2) . 2. Solve the following differential equations: a) y'(t) = sin(t)y, y(0) = y_0, b) y'(t) - 2y = 4 - t, y(0) = 6. 3. Suppose a-1 = 1. a_2 = 3. For each of the following cases, express a_n as a function of n, for n = 1,2,3,…. a) a_n = 3a_n-1 + 3a_n-2 for n≧3. b) a_n = 2a_n-1 - a_n-2 for n≧3. c) a_n = a_n-1 + a_n-2 for n≧3. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.166.208.171 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1423731705.A.4CD.html ※ 編輯: Malzahar (118.166.208.171), 02/12/2015 17:02:09
t0444564 : 已收錄 02/14 20:02