看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰複變函數論 課程性質︰必修 課程教師︰余正道 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2011/01/11 考試時限(分鐘):12:50 - 15:20 試題 : There are six problems (I) - (VI) in total; some problems contain sub-problems, indexed by (1), (2), etc. (I) [30%] Let f(z) = cos(πz). (1) Show that f(z) is of growth order 1. (2) Find the Hadamard product of f(z). (3) Prove that 2˙2 6˙6 (4m+2)˙(4m+2) √2 = ───˙───˙…˙────────˙…. 1˙3 5˙7 (4m+1)˙(4m+3) (II) [15%] Find the Hadamard product for e^z - 1. (III) [20%] Prove that for |z|<1, we have ∞ (1) the product Π[1+z^(2^k)] = (1+z)(1+z^2)(1+z^4)(1+z^8)…converges, and k=0 (2) ∞ 1 Π[1+z^(2^k)] = ───. k=0 1 - z (IV) [10%] Show that the equation e^z - z has infinitely many solutions in C. (V) [15%] Let Γ(z) be the gamma function, which is a meromorphic function on C. The Gauss multiplication formula is the following equation n-1 z+k Π Γ(───) = [√(2π)]^n-1˙(√n)^1-2z˙Γ(z) (n∈N). (◎) k=0 n For n=2, it reduces to the Legendre duplication formula. In this problem, we will prove the case n=3. Let F(z) = Γ(z/3)Γ([z+1]/3)Γ([z+2]/3). F(z) (1) Show that ── is an entire function (i.e. this meromorphic Γ(z) function can be extended to a holomorphic function on C) and is nonzero everywhere. (2) Show that d ╭ F'(z)╮ d ╭Γ'(z)╮ ──│───│ = ──│───│ for z≠0,-1,-2,…. dz ╰ F(z) ╯ dz ╰ Γ(z)╯ (3) Prove the formula (◎) for n=3. [Hint: (1) shows that F(z)=e^g(z)˙Γ(z). Use (2) to find out g(z).] (VI) [10%] Let Γ(s) and ζ(s) be the gamma function and the Riemann zeta function, respectively; they are meromorphic functions on C. (1) Show that for m∈Z, we have ╭ 1˙3˙5…(2m-1)√π │ ────────── if m>0 │ 2^m │ Γ(1/2 + m) = < √π if m=0 │ │ 2^(-m) │(-1)^m ─────────√π if m<0. ╰ 1˙3˙5…(-2m-1) ζ(2n) ζ(2) (2) Show that ───,n∈N, are rational numbers (e.g., ─── = 1/6∈Q). π^2n π^2 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.166.208.77 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1423805998.A.795.html
t0444564 : 已收錄 02/14 20:02