看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學-複變 課程性質︰必修 課程教師︰陳士元 開課學院:電機資訊學院 開課系所︰電機工程學系 考試日期(年月日)︰104/4/21 考試時限(分鐘):110分鐘 試題 : COMPLEX ANALYSIS Midterm (2015/4/21, 10:20 AM-12:10 PM) _ z 1. Prove that f(z) = e is nowhere analytic. (8%) 2. Find the imgae of the line y = a (a is a real-valued constant) in the w-plane under the mapping f(z) = sin z . (8%) -1 2 3. Find the derivative of tanh (z + 4√2 z + 8) at z = -√2 . (8%) 4. Find all values of the given quatity. -1 (1) cos (coshπ) [Hint: use the formula cosz = cosx coshy - i sinx sinhy] (10%) -1 (2) ln(tan (0)) (10%) (1-i)^2 (3) (1-i) (8%) 5. Evaluate the given integrals along the indicated contour C. (10% each) 1 (1) ∮ ───── dz , where C: |z| = 2 . C z^4 - 1 2 2 cosh z 2 y (2) ∮ ──────── dz , where C: 100x + ─── = 1 C (z - 3πi)^2 100 2π ircosθ (3) ∫ e cos(irsinθ - nθ)dθ, where n is a positive integer and r 0 is a posistive real number. [Hint: form a corresponding comples contour integral] 1 6. Find the Maclaurin series representation of f(z) = ──────── . (8%) (z - i)(z - 2) 7. What is the radius of convergence R of the power series expansion of z^3 - 1 f(z) = ─────────── centered at the origin. (4%) z^2 - (1 + 2i)z + 2i π 8. Find all isolated singular points of f(z) = csc(---) . (6%) z -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.73.49 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1430560708.A.288.html ※ 編輯: NTUkobe (140.112.73.49), 05/02/2015 18:02:22
arsenefrog : 收電機系精華 05/02 19:59