推 t0444564 : 已收錄 05/17 15:56
課程名稱︰分析導論優二
課程性質︰數學系大二必修
課程教師︰王振男
開課學院:理學院
開課系所︰數學系
考試日期(年月日)︰2015/05/05
考試時限(分鐘):50
試題 :
n
1. (20%) (a) Let f: |R → |R be a measurable function. Assume that B is a Borel
-1
set of |R. Show that f (B) is a measurable set.
(b) Assume that f is a function from X onto Y. Let B(Y) be a σ-algebra on Y.
Define a σ-algebra on X, B(X), such that f: (X, B(X)) → (Y, B(Y)) is a
measurable function.
2. (10%) If f(x), x ∈ |R, is continuous at almost every point of an interval
[a, b], show that f is measurable on [a, b].
3. (10%) Let D be a dense subset of |R. Let f be an extended real-valued
function defined on |R. Assume that {x ∈ |R: f(x) > a} is measurable for
each a ∈ D. Then f is measurable.
--
2 2 1 ψxavier13540
給定一個二次元(|R )上的開集 G,設 f: G →|R ∈ C 。考慮一 autonomous system
╭dx/dt = f(x),若 ∀t ≧ 0,有φ (x°) ∈ K ⊆ G,其中 K 在 G 上 compact,則
╰x(0) = x° t
ω(x°) 只能是一定點、一週期軌道或連接有限個 critical point 的連通路徑,不會像三
次元一樣可能出現混沌(chaos)。此即為 ODE 動力系統中的 Poincaré–Bendixson 定理。
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.76
※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1431456696.A.EA8.html