看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰機率導論 課程性質︰數學系大二必修 課程教師︰陳宏 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2015/05/21 考試時限(分鐘):70 試題 : 1. (25 points) The random variables X and Y are jointly continuously distributed with joint density given by -3 -y -2 -2y ╭ x e + x e x ≧ 1, y ≧ 0 f(x, y) = ╯ ╰ 0 else. a. (6 points) Compute the joint distribution function F(x, y) = P(X ≦ x, Y ≦ y). b. (6 points) Compute the density f (y) of Y alone. Y c. (6 points) Compute the conditional probability density f (x|y). X|Y d. (7 points) Compute P(X ≦ 2|Y = 1). 2. (30 points) Consider n independent and identically distributed random variables X , ..., X with distribution function F(x). Write 1 n 1 n F (t) = Σ 1 , t∈|R n n i=1 {X ≦t} i and n N (t) = Σ 1 . n i=1 {X ≦t} i a. (10 points) Is N (1) a binomial random variable? If the answer is YES, n N (1) ~ Binomial(n, p) and determine p. Please give reason to justify your n answer. b. (10 points) Show that F (1) converges in probability and find its limit. n _ c. (10 points) Show that for any t∈|R, √n ( F (t) - m(t) ) converges to a n 2 2 normal distribution N(0, σ (t)) for function m(t) and σ (t) which you specify. 3. (24 points) Let the point (X, Y) be uniformly distributed over the half disk 2 2 x + y ≦ 1 where y ≧ 0. 2 a. (12 points) If you observe X, find θ(x) which minimizes E[(Y-θ(X)) ]. 2 b. (12 points) If you observe Y, find η(y) which minimizes E[(X-η(Y)) ]. 4. (25 points) Let X , X , ..., X be independent normal random variables with 1 2 n 2 n mean μ and variance σ . Consider random variable Y where Y = Σ a X . Here i i i=1 i i the a are scalars. Use moment generating function to show that Y is normally i distributed, and find its mean and variance in terms of moment generating function. 2 2 2 υt +τ t /2 When X ~ N(υ, τ ), its moment generating function is m (t) = e . X -- 2 2 1 ψxavier13540 給定一個二次元(|R )上的開集 G,設 f: G →|R ∈ C 。考慮一 autonomous system ╭dx/dt = f(x),若 ∀t ≧ 0,有φ () ∈ K ⊆ G,其中 K 在 G 上 compact,則 ╰x(0) = t ω() 只能是一定點、一週期軌道或連接有限個 critical point 的連通路徑,不會像三 次元一樣可能出現混沌(chaos)。此即為 ODE 動力系統中的 Poincaré–Bendixson 定理。 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.76 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1432196084.A.268.html
t0444564 : 已收錄 05/24 01:20