看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程導論 課程性質︰數學系必修 課程教師︰林太家 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2017.4.18 考試時限(分鐘):110分鐘 試題 : Test 1 April 18th x+2y 1.(20%) Slove 2u + u + u = e with u(x,0) = 0. x y 2.(20%) Solve the initial value problem n u + b‧grad (u) + cu = 0 in R ×(0,∞) / t x n \ u = g on R ×{t = 0} n Here c ∈ R and b ∈ R are constants. 3.(20%) Solve using characteristics: xu + 2yu + 3u = u , u(x,y,0) = g(x,y) x y z 2 4.(20%) Solve u = u + —— u for r,t>0 with tt rr r r u(r,0) = φ(r) and u (r,0) = ψ(r) for r>0. t 5.(20%) Let u = u(x,t) and v = v(x,t) be smooth function satisfying u = u for x ∈ (-1,1),t>0 / tt xx \ u = 0 for x = ±1,t>0 and v = v for x ∈ (-1,1),t>0 / t xx \ v = 0 for x = ±1,t>0 1 2 2 1 2 Let E(t) = ∫ (u + u ) dx and F(t) = ∫ (v ) dx for t>0. -1 t x -1 dE dF Prove —— = 0 and —— ≦ 0 for t>0 (10% each) dt dt -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.45 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1492514408.A.AFB.html