看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數二 課程性質︰數學系選修,可抵必修代數導論二 課程教師︰林惠雯 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2017/3/20 考試時限(分鐘):50分鐘 試題 : 1. Do one of the following problems. (a) Let f(x) ∈ K[x]. Prove that a splitting field of f(x) over K exists and is unique up to isomorphism. (b) Let K be a field. Prove that an algebraic closure of K exists and is unique up to isomorphism. (c) Let K ⊂ M ⊂ L be a tower of fields. Prove that L/K is a separable extension if and only if both L/M and M/K are separable extensions. 3 2. Determine the Galois group G of the polynomial x +2 over Q and the correspondence between subgroups of G and intermediate fields between Q and 3 the splitting field L of x +2 over Q. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.249.45 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1498374603.A.45A.html