看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學-線性代數 課程性質︰必修 課程教師︰馮世邁 開課學院:電機資訊學院 開課系所︰電機工程學系 考試日期(年月日)︰2018/06/27 考試時限(分鐘):09:20-11:00 試題 : Use of all automatic conputing machines including calculator is prohibited 1. — — | 1 -2 2| A = |-4 3 -4| |-8 8 -9| — — (a)( 6%) Find the characteristic polynomail of A. (b)(14%) Find an invertible matrix P and a diagonal matrix D such that A = PD(P^-1). 2.Let W = Span{u1, u2, u3}, where — — — — — — | 1| | 2| | 2| u1 = | 0|, u2 = | 1|, u3 = |-1| |-1| |-1| |-1| | 1| | 0| | 3| — — — — — — (a)(14%)Find an orthonormal basis {w1, w2, w3} for W. (b)( 6%)Let v = [1 1 1 1]^T. Find a vector w in W and a vector z in W^┴ such that v = w + z. 3.(10%)Let W = Null[1 1 1 1]. Find the orthhogonal projection matrix Pw. 4.(10%)Find two 4 x 1 vectors q3 and q4 auch that Q = [q1 q2 q3 q4] is orthogonal, where q1 and q2 are respectively given by — — — — | 1| | 1| q1 = 0.5 | 1|, q2 = 0.5 | 1| | 1| |-1| | 1| |-1| — — — — — — | 1 -1 | 5.Let B = | 1 1 |. Let W = {A 屬於 M(2x2) : AB = BA } — — (a)(10%)Prove that W is a subspace of M(2x2). (b)(10%)Find a basis for W. 6.Let T : P2 → P2 be a linear transformation defined by T(p(x)) = p(0) + 3p'(1)x + p(2)x^2, where p'(x) is the derivative of p(x). Let B = { 1, x, x^2} be a basis for P2. (a)( 8%)Find the matrix representation of T with respect to B, i.e., find [T]B. (b)(12%)Find a basis for the null space of T and find a basis for the range of T. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.216.224 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1530075526.A.0B6.html
zero : 已收電機系 07/01 16:16