看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學 - 線性代數 課程性質︰電機系必選 課程教師︰林茂昭 開課學院:電機資訊學院 開課系所︰電機工程學系 考試日期(年月日)︰2018/10/31 考試時限(分鐘):0910-1010 試題 : Quiz 1 of Linear Algebra 1. (10%) Let u and v be any vectors in R^n. Prove that the spans of {u, v} and {u + v, u - v} are equal. 2. (10%) Prove tha if A is an m×n matrix and B is an n×p matrix, then rank AB ≦ rank B. 3. (10%) Prove that if A is an m×n matrix and P is an invertible m×m matrix, then rank PA = rank A. 4. (10%) Let T([x_1 x_2]^T) = [2x_1 + 3x_2, 4x_1 + 5x_2]^T. 其中 ^T 表轉置矩陣 Determine whether T is one-to-one. 5. (10%) Let T([x_1 x_2 x_3]^T) = [x_2 - 2x_3, x_1 - x_3, -x_1 + 2x_2 - 3x_3]^T Determine whether T is onto. 6. (15%) Let A be an m×m matrix for which the i-th column is identical to the j-th column, where i≠j. Prove that det(A) = 0 7. Let T: R^n → R^m ba a linear transformation and V ba subspace of R^n. (a)(10%) Prove that W = {T(u): u \in V} is an subspace of R^m. (b)(10%) Let {u_1, u_2, ..., u_k} be a basis of V. Prove that {T(u_1), T(u_2), ...,T(u_k)} is a basis of W if T is one-to-one. 8. (15%) Let \hat{B} = {b_1, b_2, b_3} ba a basis of R^3. What is the relation between the matrix B = [b_1 b_2 b_3] and the matrix A = [[e_1]_\hat{B} [e_2]_\hat{B} [e_3]_\hat{B}]. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.244.25 ※ 文章網址: https://www.ptt.cc/bbs/NTU-Exam/M.1547905776.A.35D.html
zero : 已收電機系 05/07 15:55