看板 Soft_Job 關於我們 聯絡資訊
背景:4~7年經驗(anonymized), 求學背景是純商, 程式100%從0自學來的 Leetcode去年訂了一年Premium之後開始刷,累積到目前700題,Medium + Hard佔約70% 2020年2月開始陸續投遞履歷,全部都是投英國/日本的職位 只有Google例外是台北辦公室(GCP) 投遞:Stripe, Yelp, Microsoft, Apple, Indeed, Google, Facebook, Spotify, TikTok, Twitter, Lyft, Yelp, SmartNews 無聲卡: Microsoft, Lyft, Twitter, GitLab 以下面試經驗照面試時間順序排列 ------ * Spotify - Software Engineer (Data) - 透過LinkedIn投遞履歷 [ Phone - Feb ] - coding: Valid Parentheses, 給定一字串,寫一個function來辨認是否為valid - follow-up: 多幾個不同的Parentheses, 例如{} [] () - follow-up: 寫成map reduce的形式, 怎麼設計mapper & reducer - 有沒有聽過prabalistic data structure? 給一個例子 (我給Bloom Filter) - 一些簡單的SQL問題 [ Onsite - Mar] 早上兩面,下午兩面,中午在spotify london的飯廳跟兩個工程師吃飯, 飯後閒聊順便玩一下飛鏢,再繼續面試 - System design問題,設計一個Top 10 tracks API與實時計算系統 - Behavioural問題,tell me a situation when ....STAR類問題, 就照著過往經驗回答即可, 隨時要跟hiring manager做eye contact爭取感情加分 - Case analysis, 給一個line chart是三個國家的DAU, 並發現US DAU nose-diving, 問題出在哪?跟面試官交互討論出問題成因 主要考察邏輯分析,溝通能力 - Coding: 暖身題Fizzbuzz, 迅速寫完之後給了一些簡單的follow-up - Coding: Longest Session. 給定一個List of 4-tuple [user_id, track_id, timestamp, time_played], 找出最長的session. -> 類似LC 56. Merge Intervals, 最佳解O(NlogN) Follow-up: 如果input塞不進memory, 怎麼解? 我簡短回答有Disk-based or Mapreduce approach 然後我深入講了一下MapReduce怎麼寫 Spotify這職位有意思的地方是會考Case Analysis, 通常這比較常用來考data/business analyst, 還好我唸過商學院XD [ Result ] 三天後通知結果, offer get. £105K GBP/year ------ * Indeed - Senior Software Engineer - 透過japan-dev.com投遞履歷 [ Phone - Feb ] 使用Karat面試,可以在週末面(加分!!) - coding: 類似LC 1143. Longest Common Subsequence, 給定兩個字串 找出最長公共子字串. 另外兩個問題我忘了,都是LC easy. 掌握好基本學理, 好好溝通你的解法並迅速implement出來就好 - 系統問題:Thread v.s. Process, thread exhaustion, memory leak, Java GC (SOTW). container的優點...等等 [ Result ] 本來安排要3月中飛日本on-site,因為武漢肺炎爆發突然宣布hiring freeze 無限期on hold, sad ------ * Google - Software Engineer 內推, 原本推日本的缺,Recruiter說日本沒有我的專業 (日本office主要做Mobile及NLP Research), 台北/倫敦比較多GCP/Data的缺 [ Phone - Apr ] LC Medium難度,實作time_delta函數,就是給你一個Date class跟一個正整數, 例如(2020-01-01, 5),要回傳2020-01-06. 一開始給了一個naive的O(N)解, 面試官提示問有沒有更好的解,然後我解釋了一個O(logN)的解 (但沒時間implement 還好最後有pass,感覺是溝通跟邏輯推理很重要(即使沒寫出完整的最佳解) [ Virtual On-Site - May ] 全部都是coding interview 沒有system design - LC Hard矩陣題, finding the size of largest submatrix sum to 0. 看過這題目的variation (LC 1074) 花了20分鐘實作O(N^3 using Kadane's algorithm)解法,寫完之後閒扯了一些 test corner cases. 這題你沒看過最佳解法的話 能想到並實作O(N^4)的prefix sum解法已經很猛了, 多做點題還是有幫助的 - LC Medium有向圖題, 這題在Leetcode上沒看過類似的,給你一個樹, 可以視為Direct graph及一個想delete的節點,找出所有detached的節點。 花了20分鐘討論,10分鐘用DFS寫了一個解答 (然後面試結束我想了一下發現了一個bug, 扼腕) - 2題LC Easy~Medium字串題,這題也沒看過, 概念上類似finding palindromes in a list of strings, 例如mow在轉置後會等於原字串mow。第二題是follow-up, 要找出轉置後不等於原字串的,例如loom -> wool - 2題LC Medium,N-ary tree尋找兩個node的共同祖先, 答出第一題後給了一個follow-up (如果兩個node很靠近該怎麼最佳化?) 給了一個錯誤的解法(錯把有向圖當無向圖來解),算是GG - Behavioural, 無難度,就問一些你遇到XX狀況會怎麼做, 之前遇到甚麼衝突的情況之類的,照真實情況回答即可, 但盡量touch到Googlyness讓面試官找到signal幫你加分, 例如be friendly and approachable, focus on customer, do the right thing之類的 [ Result ] On-site 5天後通知表現fairly well送package到HC, 10天後通知沒過HC, 自己評估是兩個hire, 兩個leaning(hire/no-hire), Google標準很高所以....Reject 我側面了解是要拿到三個hire以上? 這部分如果有熟悉的Googler為我解惑 我感激不盡 ------ * Facebook - Software Engineer - Infra 內推(感謝Brian Hsu大大) [ Phone - Apr ] 一題LC Medium, LC 146. LRU cache的變體 用Doubly-linked-list & Hashmap實現 被面試官提醒非常多次一些小地方有bug,感覺GG [ 2nd Phone - Apr ] 上一個Phone interview雖然有寫出最終解答,不過中間提示太多 面試官覺得需要加麵一次, 這次是一題Easy, 不在LC上, 是tax bracket calculation (我在LC discuss中有看到),給出O(N)最佳解 另出一題Hard, LC 42. Trapping Rain Water的變體,給出3-pass O(N)次佳解, 中間卡了非常多次, 面試官不停給hint. 這輪我遇到很有意思的面試官, 寫出的feedback精細到我幾分幾秒的時候說了甚麼話都記錄下來, 簡直人體Logger [ Virtual On-Site - June ] On-site前recruiter説E4已經額滿,所以我要拿Offer就必須直接拿E5(Senior) offer, 不然就算表現有E4水準也不發offer,搞得我壓力很大... 面試前把所有FB tag的leetcode題刷好刷滿 每題至少刷三次 - 2 LC mediums, 實作bisect.insort_right 跟 在一個NxN矩陣尋找最長連續數字. 皆給出最佳解 - 2 LC mediums, 一題LC 3.的變形,一題LC 398.的變形, 皆給出最佳解(linear time & constant space) - 系統設計,給幾個constraint下設計一個分散式爬蟲系統,自認表現沒有E5水準. GG - Behavioural問題,就一般聊天,一邊看著FB的評分標準 一邊把該講的點全部都講到讓面試官好給分,因為我面E5, 需要大量強調領導經驗跟跨團隊合作,例如以下這幾點: - INTRINSIC MOTIVATION - BEING PROACTIVE - PERSEVERANCE - CONFLICT RESOLUTION - EMPATHY - GROWTH - WORKING IN AN UNSTRUCTURED ENVIRONMENT - COMMUNICATION [ Result ] 禮拜二面試,隔一個禮拜收到結果,表現不到E5水準, 兩關coding跟system都得到hire recommendation for E4, 但behavioural面試沒有回答好,有點borderline Recruiter的feedback是solid E4 但今年度E4已經沒有head count了 所以算reject吧 Recruiter也提到如果今年或明年的E4 head count再開可以送HC 但目前一切都還很難講,建議我不要等待,累積實力等到明年再試一次E5 ------ * Stripe - Machine Learning Engineer - LinkedIn獵頭找上 [ Phone - Jun ] - coding: 兩題,input是一個DB table, 以JSON來表示。 一題尋找table中最小的column, 一題尋找table中最小的數個columns(tie-breaker) e.g. table = [{‘a’: 1, ‘b’: 2, ‘c’: 3}, {‘a’: 2, ‘b’: 1, ‘c’: 2}] minCol(table, ‘a’) -> 回傳{‘a’: 1, ‘b’: 2, ‘c’: 3} minCol(table, ‘b’) -> 回傳{‘a’: 2, ‘b’: 1, ‘c’: 2} 一畝上有很多Stripe面經提到一樣的題目,看來是高頻題一直重複出 [ Virtual On-Site - Jul ] Stripe喜歡用pair programming來測試面試者, 我個人很喜歡這種面試方式, 比FB那種一個session固定給你兩題LC類型的題目要有意義多了 就算最後沒拿到offer也可以學到很多東西。 - Behavioural: 直接跟用人主管面試,可以趁機問一些組的方向跟個人成長 - Machine Learning Coding: 給一個dataset,生出一個model, 並談到各種model類型,imputation strategy, evaluation metric的選擇, precision-recall trade-off等等 建議面試前可以到kaggle下載dataset來練習並多讀別人做機器學習的經驗 - Bug Squash: Debugging練習,給一個github codebase及幾個會報錯的test, 並寫出bug fix, 這題我當下太緊張沒寫出來, 面試完後一下就解出來了 - Coding: 寫一個class, 拿schedule當input, 產出什麼時間點要寄送什麼subject的email. - Machine Learning System Design: 設計一個end-to-end fraud detection系統 40% ML design, 40% system design, 20% business metrics. 答的不知所云 [ Result ] 一個禮拜後通知rejection, 估計是最後一關Machine Learning System Design 我在溝通方面表現不夠好,Stripe的bar也非常高 (recruiter說這個role是EMEA區的first hire, 標準特高) ------ * TikTok(Bytedance) - Software Engineer - 透過LinkedIn投遞履歷,妙的是面試官全是中國人,直接中文面試XD,瘋狂中英加雜 [ Phone - Jul ] - coding 1: 給一個MxN的布林矩陣, 1代表有一個人在該位置上 如果同一個行或列上有兩個以上的人就代表他們都是非alone 最後回傳有幾個人是非alone [0 1 1 0] [0 0 0 1] -> return 5 [1 1 1 0] 最後給出最佳解,two pass scan time complexity O(M*N) & space complexity O(1) [ Phone 2 - Aug ] - coding 2: 給一個array [5 2 1 1 2 5], 必須使用所有的元素來形成任意個subset 每個subset的和是一樣的, 尋找最大的subset數量 (依這個例子答案為2). 這題可以視為LC.698的變體(不指定k)。一開始我覺得可以用greedy, 後來討論得到counter-example後改用sort + backtracking暴力解. [ Phone 3 - Aug ] - 針對履歷問了非常多問題也非常細,舉幾個例,API gateway的好處是什麼 (SSL termination, throttling blah blah..), API rate limiting具體怎麼實現(token bucket algorithm), CAP theorem,怎麼樣避免S3上eventual consistency的問題, 訓練出來的模型怎麼存放/versioning,evaluation metric怎麼挑選, 做什麼trade-off,怎麼debug Spark jobs...等等 可以感覺出來面試官知識量很夠 - 順便問了一題coding 3: LC 56. Merge intervals 你能寫錯嗎? 練到爛了閉著眼睛都能寫出來 [ Result ] 前三輪我聽recruiter説都是得到很好的評價, 剩下應該還有一到兩關面試, 但大概是最近抖音美國被川普搞得雞犬不寧 recruiter直接ghost我,我也懶得follow-up了 * Yelp - Senior Software Engineer - 2019年11月網路上投遞,2020年8月才收到OA邀請orz [ Online Assessment - Aug ] - 一題,給一連串的Review,有公司id跟使用者id,算公司間的jaccard similarity [ Phone interview - Aug ] - 不記得問啥了,很簡單就是 [ Onsite - Sep ] - Behavioural interview: 過去的失敗,最驕傲的project,最困難的project等等 - System design: 設計distributed cache system - Behavioural interview: 遇到衝突如何處理,最好給出實際例子,不然他們一律當你 是掰的 - Coding interview: 非常簡單的問題,兩個follow-up,LC easy那種 [ Result ] 面試完兩個禮拜後通知verbal offer for IC3, £125k GBP/year 優點是可以fully remote 完全不用進辦公室也沒關係 而且拿到offer之後所有的面試官都寄信給我恭喜我...汗 * Apple - Software Engineer - 內推,當初內推選了四個職位,其中一個是AI/ML組,這是JG的組 (JG是Jeff Dean很久以前在Google的上司,2018年join Apple) 算是Apple頗具未來潛力的組,專門做Machine Learning的 - Apple組與組之間的面試風格差異非常大,僅供參考 [ Phone - Aug ] - 針對履歷問一些問題,包括機器學習/分散式系統,都是基礎知識, 但可以感覺出來面試官知識量很夠 - coding: 給一串文本, 及兩個字, 回傳最小的距離 e.g. text = [cat dog cat dog mouse], word1=cat word2=mouse, output為2 e.g. text = [cat dog mouse dog mouse], word1=dog word2=mouse, output為1 e.g. text = [cat dog mouse dog mouse], word1=mouse word2=mouse, output為2(不是0喔!!) [ Phone 2 - Aug ] - coding: LC 200. 加問了幾個follow-up但都很基本 太熟了,時間還沒到就結束面試了 [ Onsite - Sep ] 總共五輪面試,分成兩天,面試官幾乎都是同team或隔壁team的, 看LinkedIn發現這些人背景一個比一個兇猛,還沒join就開始有imposter syndrome了... - 第一輪Behavioural:問了一堆技術上的問題,怎麼trade-off,怎麼lead, 怎麼解決衝突,怎麼面對同team的人的challenge等等 - 第二輪Coding: 先花了半小時討論怎麼設計一個fault-tolerant的資料處理系統, watermark,idempotency,一些實務上會遇到的巨量資料處理問題等等 然後花十五分鐘問了一個基本的Linked List問題,把A-B-C-D反轉成B-A-D-C, 再follow-up一下如果寫成recursive call要多少個node才會產生stackoverflow (1MB stack總共可以裝16k個call,每個call有return address/3 local variables /1 arg/1 function reference pointer) - 第三輪Coding: 非常模糊的問題,給一個array of log entry, 類似下面的格式 LogEntry { user_id query timestamp session_id. // NEW reformulation_type // NEW } 要寫出兩個function, 一個是怎麼產生reformulation type, 就是query跟query之間的關係 可以是add/delete/modify/same 等等 (這些都要自己去定義,面試官完全不說話) 一個是要你在這個log entry裡加兩個新的field. 給了一個O(NlogN)的做法,並用Jaccard similairty去產生reformulation type 這題非常新穎,我運氣好剛好想到jaccard similarity的解法 過後聽feedback說是讚譽有加 - 第四輪System design: 設計多人線上井字遊戲系統 - 第五輪Machine Learning: 問了很多簡歷上的東西,怎麼最佳化model training 之前是怎麼改善模型, 一些技術細節怎麼實現等等, 然後就開始轟炸我機器學習相關問題 例如假設今天我是蘋果工程師,會怎麼做federated learning on 1 billion devices GBDT要取哪些模型輸出送往中央伺服器,每個epoch要多少個參數 怎麼對模型輸出動手腳以免被attacker逆向工程出真的模型(鬼才知道) 後來沈思一下,隨便亂回答一個加入Gaussian noise進去參數裡面, 結果竟然矇對了(汗) 話說這個職位並不是做ML的,所以這一輪本來是coding interview 但是因為我過去背景以及面試官背景的關係 我猜他面到一半就改弦易轍想全部都問我ML, 不愧是蘋果,夠random 面完後好奇看了一下面試官LinkedIn, 嗯劍橋PhD in ML [ Result ] 面試完過了一個禮拜通知verbal offer for ICT4, Fuzzy offer for anonymity: £140K ~ £170K GBP/year 總結: Reject: Indeed(?), Google, Facebook(?), Stripe, TikTok(?), SmartNews(做完OA就被reject了) Offer: Spotify, Apple, Yelp 對凡人(Non ACMer/Non奧賽)而言刷題很重要, 我Leetcode買了premium後大概花11個月時間陸陸續續刷了約700題, 每天下班後穩定1~3小時左右無壓力慢慢刷, 輔佐以Elements of Programming Interviews的解題觀念。 Coding interview最重要的就是problem clarification沒有之一, 你沒有搞清楚輸出輸入跟邊界條件根本不可能寫出好的解答, 另外我強烈推薦找一兩個人幫你mock interview, 我自己透過mock解掉了很多解題面試上的盲點 結果就是除了Google之外 我今年沒有fail過任何一個coding interview. System Design準備上我只有在Youtube上看看一些影片, 再加上一本Design Data-Intensive Application (DDIA, 軟體工程師必讀聖經本), 以及一本Streaming systems(有點太專門了), 其他都是平常設計系統的實戰經驗累積。 我有看Gro-k-k-ing the system interview, 但我覺得有些deep dive不夠深, deep dive部分還是要靠DDIA, system design primer (https://github.com/donnemartin/system-design-primer) 以及follow一個大神的頻道 (https://www.youtube.com/channel/UC9vLsnF6QPYuH51njmIooCQ) 經常看LC以及一畝三分地的面試經驗有很大幫助,讓我理解各個公司面試風格的不同 (例如FB愛出LC原題每輪要解完兩題,G幾乎不考原題, 重視溝通 problem solving與逐步優化, Amazon極重視Leadership principle, Apple基本無法準備,完全不按牌理出牌等等). TC(total compensation)在Blind & levels.fyi上可以找到一些參考 (但台灣幾乎沒有任何樣本可供參考, 嘆), negotiation也是必要的,上網看看人家怎麼做, 例如這傢伙https://haseebq.com/my-ten-rules-for-negotiating-a-job-offer/ 希望這些面經對大家有些幫助! -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 80.2.23.126 (英國) ※ 文章網址: https://www.ptt.cc/bbs/Soft_Job/M.1600446532.A.1E2.html
meokay: 推好心 09/19 00:38
yyhsiu: 感謝詳細分享! 很有用 09/19 00:39
richard07250: 感謝這篇 很詳細還有準備方向跟教材 09/19 00:48
sorryla: 谷歌的HC標準也不是固定的,人頭太多找不滿的時候會比較 09/19 00:51
sorryla: 好過 09/19 00:51
h5904098: 強者推 09/19 00:51
hbnacl: 推! 09/19 00:51
CKNTUErnie: 推 09/19 00:51
GGFACE: 好強 09/19 00:52
rotalume: 厲害! 09/19 00:59
lairx: 推 09/19 01:23
leon1757tw: 強者 推 09/19 01:24
lunqscesz17: 感謝分享 09/19 01:43
ChoDino: 感謝分享! 09/19 02:10
showan: 強 09/19 03:10
kyrie77: 推詳細 09/19 03:12
hsdheart: 推! 09/19 03:20
Harlequin727: 好強 恭喜 09/19 03:37
unmolk: 超猛 推 09/19 03:57
shancool: 推! 09/19 04:11
tnfshjcc: Medium/Hard一天兩題真的猛 09/19 04:46
tbpfs: 強者!!不過實作time_delta這題我看不懂題目,可以解釋一下 09/19 06:05
tbpfs: 嗎? 09/19 06:05
tbpfs: 另外 英國的物價跟台灣差多少? 09/19 06:06
Eric0605: 強者 09/19 07:09
ddoll288: 推 09/19 07:24
yac516joe: 推!! 09/19 07:57
NOYUYU: 超強!推 09/19 08:09
kangan987: 神人阿! 09/19 08:21
baobomb: 推強者 SmartNews的OA很迷 我自己剛拿到offer 但朋友OA 09/19 08:40
baobomb: 跟我同時做 給的解答也差不多 卻直接reject 09/19 08:40
Ouranos: 好厲害! 推~ 09/19 08:56
ianwind: 推, domain 超強 09/19 09:35
aa06697: 推強者 09/19 09:41
jj0321: 羨慕外商看實力 背景非本科+自學也能有面試機會 09/19 09:52
william45682: 666 09/19 09:54
q1q1w1w1q: 這篇可以精華了 09/19 09:56
westercc: 感謝分享! 09/19 10:06
chongruei: 強者推 09/19 10:20
Gway: 強者 細心分享 推一個 09/19 10:21
am970813: 推 09/19 10:22
rickykai: 感謝分享 09/19 10:24
Dartmoor: 恭喜!感謝分享,想請問一下您能拿到MLE的面試是因為有 09/19 10:33
Dartmoor: 實際工作的經驗還是在Kaggle,線上課程裡自學的呢?謝 09/19 10:33
Dartmoor: 謝啦 09/19 10:33
tiramisu0225: 推 09/19 10:41
Csongs: 推 09/19 10:55
benjamin1023: 推一個 強者 09/19 11:00
lau860908: 鬼 09/19 11:07
alongalone: 你是在台灣嗎 ? 09/19 11:09
alongalone: 感覺你是國外工作的人? 09/19 11:10
yojiamhippo: 大神 09/19 11:32
asdg62558: 推強者 09/19 11:39
mike8469: 推 強者 09/19 11:45
longlyeagle: nice nice 09/19 11:45
asd123159: 推強者 最近也要開始看CTCI跟面經了 09/19 11:48
giantwinter: 超強 09/19 11:49
tmdla: 神人拜 09/19 11:50
ukuk666888: 超強的推 09/19 11:57
ken1325: 好強...... 09/19 12:20
f9g8h7j654: 推 09/19 13:07
td770715: 強爆 09/19 13:31
tommyptt: 太神了 09/19 13:35
Yan5566: 我跪了 09/19 13:52
ohsuoh: 強 09/19 14:03
oscar60111: 強者 感謝分享 09/19 14:05
angellee0102: 推強者! 09/19 14:14
alanno1: 推強者,而且還是位女生! 09/19 14:26
bowin: BIG congrats! 推好文分享 09/19 15:04
azzc1031: 太神了吧...這是何等的高高手啊!! 跪了 09/19 15:11
jimjim951357: 推 09/19 15:46
CGSBN: 好強 推 09/19 16:58
johnny719top: 好強QQ 09/19 17:12
dddingnan: 推推 強者 09/19 17:19
g001613001: 大神給推了! 09/19 17:21
touurtn: 700.............. 09/19 17:52
Apache: 大師 早知道也念商科 09/19 18:02
tomap41017: 推 09/19 18:03
Murasaki0110: 求學商科 工作看起來不是吧 09/19 18:09
fish750102: 回覆推文幾個問題:先前工作經驗都是工程師,領域是大 09/19 18:20
fish750102: 數據+ML。在台灣跟國外都工作做過幾年 09/19 18:20
fish750102: 畢業以前就已經在學程式了,第一份工作也是工程師 09/19 18:21
yupog2003: 好強 09/19 18:32
note35: 推 09/19 18:39
kingnamefu: 推~太強了!恭喜你! 09/19 18:56
lk2986706we: 神人等級 推 09/19 19:01
TAMSHUI: 強! 09/19 19:03
qq122618071: 太神了 敬佩 09/19 19:12
king22649: 有點好奇 leetcode是免費的刷一陣子 才買 還是一開始就 09/19 19:17
king22649: 直接買premium 09/19 19:17
a6976933: 推強者 09/19 20:14
ga0952briel: 推!謝分享 09/19 20:15
iphoneX5566: 強者推 09/19 20:21
alan23273850: time delta 為什麼不是 O(1) 呢 09/19 20:25
ssszl: 太強啦 09/19 21:08
MaxGDAM: 拜見大佬 09/19 21:16
NewLifePage: 大推 太強了!! 09/19 21:20
yesgowow: 謝謝分享! 09/19 21:28
safe: 佩服 09/19 21:53
kaboom: 推強者,謝謝分享 09/19 22:15
nba1895: 太神啦!推 09/19 22:49
as9518623: 強者!感謝分享 09/19 22:50
Vick753: 我怎麼連題目都看不懂 09/19 23:32
nba887215: 強者,推 09/19 23:33
smily134: 推 09/20 00:24
gank9527: 推 09/20 00:29
eeureka: 好猛... 09/20 01:25
geezO1234: 推 09/20 02:30
Dartmoor: 感謝回答問題 太強了 謝謝分享 09/20 02:54
iamOsaka: 好厲害 感謝分享 09/20 09:24
answerseeker: 恭喜 Lyft 有非美國辦公室? 09/20 09:50
SinBaJiKun: 推!真強者! 09/20 09:55
vi000246: 強者推 09/20 10:15
funboy820: 推 感謝分享 09/20 10:28
alpq: 讓他爆 推~ 09/20 11:27
cecol: 感謝分享 09/20 11:51
p90085: 推 09/20 13:39
starburs: LeetCode 700題先跪了 09/20 13:42
jlhc: 有分享給推 09/20 14:04
Rm: 感謝分享經驗 09/20 16:08
k20057: 太神啦 09/20 16:28
blackdiz: 感謝分享 09/20 18:26
javy0521: 推 09/20 19:19
jason4571: 強者 09/20 19:48
tay2510: 推 09/20 20:03
ken90242: 好強RRR 09/20 20:32
Psyman: 謝謝分享! 09/20 20:35
voyager520: 感謝 09/20 21:53
Ekmund: wow..... 09/20 21:54
zmcx16: 強者推! 感謝分享, 下班還能持續刷leetcode真的佩服 09/20 22:08
richer6605: 非常感謝您願意分享寶貴經驗 09/20 22:12
JimmyChoo: 想請教一下,您這些職位的工作地點是在台灣還是國外呢 09/20 22:17
JimmyChoo: ?如果工作地點是在國外,是怎麼進行面試的呢?是自行 09/20 22:17
JimmyChoo: 飛到當地投履歷找工作?還是公司出錢讓你飛過去面試? 09/20 22:17
JimmyChoo: 還是人在台灣用Skype面試呢? 09/20 22:17
z123456000: 推 09/20 23:40
FY4: 推 09/21 00:30
nedekwn: 強者推 感謝分享~ 09/21 00:37
jerboaa: 推 09/21 00:42
nini200: 真的強 09/21 01:33
snow0112: 推分享 09/21 02:41
superpandal: 研究了一下 看起來不簡單 09/21 03:35
domototice: 到底是因為她是女生還是強者才爆..台大CSIC有這麼弱嗎 09/21 05:13
domototice: 我想作者本人應該是很漂亮不然就是很有氣質內涵的女生 09/21 05:19
northsoft: 現在軟體業面試這麼苦啊... 09/21 17:12
loxyz: 大推詳細分享 09/21 17:51
cha122977: 回Google部分 沒有非要3 Hire 評分參考用 實際看內容 09/21 18:34
scott800123: 太強了 09/21 23:33
viper9709: 推分享 09/21 23:53
cshu0520: 神人 超猛 09/22 00:54
leo38096: 推用心 09/22 01:08
DonkeyLiu: 推 09/22 08:45
wisehuang: 太強了 09/22 11:18
tomroy: 幹好強...... 09/22 12:30
Rumbl: 推詳細 09/22 13:09
KyGrA: 強強強! 09/22 15:40
t78973677: 整理好詳細,感謝分享,也恭喜offer get 09/22 15:42
Wolfken: 就我知道HC也是蠻看運氣的,看當時reviewers的看法跟偏好 09/22 16:20
nfsong: 強 09/22 16:46
saladim: 看到GBDT跟federated learning都會,一定很早就做相關的 09/23 02:01
saladim: 惹 一兩年相關經驗哪能塞進這麼多東西還proabablistic 09/23 02:03
saladim: XDD 太強惹 羨慕 Q_Q 09/23 02:04
saladim: 不過推文裡面有人提的CSIC是? 09/23 02:05
cacadeon: 很詳細,感謝分享 09/23 11:07
ian159627: 推 09/23 13:07
Arctica: 跪著看 09/23 16:32
terry8575: 好猛... 已經是超級強者了 09/23 16:56
weifan: 推分享 09/24 11:43
wl02008923: 感謝強者分享 跪著推文 09/24 12:05
cory8249: 推 09/24 13:15
jcaosola: 以現在leetcode的獎勵機制 就算沒從contest拿到金幣 09/24 18:30
jcaosola: 莫約每七個月也可以解鎖一次一個月的premium 09/24 18:32
jcaosola: 最近就把要解鎖(主要是database的部分)的通通寫完了 09/24 18:33
jcaosola: 解題排名進到前百後 未解題目數:解題排名 ~= 1:1 09/24 18:38
ppc: 推爆 09/24 23:49
ggisfun: 推 09/25 02:34
sdriver: 連寫online game也問 09/27 21:59
kenshih1203: 推 10/03 21:14
thsyou9527: 好強!!!!! 10/03 23:02
woodoo: 謝謝分享 10/20 14:38