精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程式一 課程性質︰研究所基礎課 課程教師︰林太家 開課學院:理學院 開課系所︰數學系、數學研究所、應用數學科學研究所 考試日期︰2014年10月14日(二),10:20-12:10 考試時限:110分鐘 是否需發放獎勵金:是 試題 : Test 1                               10/14/2014 1. (20%) Φ(x) = -log|x|/(2π) for x∈R^2, x≠0. Prove that   -△u = f in R^2,   where f ∈C(∞,0)(R^2) and u(x) = ∫ Φ(x-y)f(y)dy for x ∈R^2.                    R^2        _     1 2. (20%) Let u(r) = ----------  ∫ u(x)dS_x for r > 0            r^(n-1)  ∂B(0,r)   and u ∈C^2(R^n). Prove that    _  ___   △u = △u for r > 0.        _   Note that u is radially symmetric in R^n   but u may NOT be radially symmetric in R^n. 3. (20%)   Prove that Laplace's equation △u = 0 is rotation invariant; that is, if   O is an orhogonal n ×n matrix and we define               v(x) := u(Ox) (x∈R^n),   then △v = 0. 4. (20%)   Let U^+ denote the open half-ball {x∈R^n | |x|<1, x_n > 0}.         _   Assume u∈C(U^+) is harmonic in U+, with u = 0 on ∂U^+ ∩{x_n = 0}.   Set           v(x) := u(x)          if xn≧0               -u(x1,...,x_(n-1),-x_n) if xn<0   for x∈U=B^o(0,1). Prove v is harmonic in U. 5. (20%)          _   We say v∈C^2(U) is subharmonic if                  -△v≦0 in U.   (a) Prove for subharmonic v that                 1           v(x) ≦ ----------  ∫vdy   for all B(x,r)⊂U.                |B(x,r)| B(x,r)   (b) Prove that therefore max v = max v.                U   ∂U -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.4.196 ※ 文章網址: http://www.ptt.cc/bbs/NTU-Exam/M.1414485356.A.7CC.html